Odor-Sampling Time of Mice under Different Conditions
نویسندگان
چکیده
منابع مشابه
Odor-sampling time of mice under different conditions.
Response accuracy and odor sample times on positive (S+) and negative (S-) trials were recorded for mice trained on a variety of go, no-go odor detection and discrimination tasks. Odor sample time was relatively stable over extended training on the same task, increased during acquisition of difficult tasks, relatively insensitive to reinforcement magnitude, and, in some cases, provided more inf...
متن کاملReal Time Face Recognition under Different Conditions
Face recognition is an active area of research since 1980s. It is one of the most successful and important applications of image analysis and processing. Eigenface approach is one of the earliest appearance-based face recognition methods, which was developed by M. Turk and A. Pentland in 1991 [1]. This method utilizes the idea of the Principal Component Analysis (PCA) which decomposes a face im...
متن کاملFluid Sampling under Adverse Conditions
Des échantillons valables sont essentiels pour bien caractériser les fluides de gisements. Si les échantillons ne sont pas représentatifs, toutes les mesures ultérieures seront entachées d’erreurs. Cet article discute les principaux défis en matière d’échantillonnage, en particulier les réservoirs de gaz à condensats, les gradients compositionnels, la teneur en eau des fluides hydrocarbonés, le...
متن کاملOdor Sampling: Techniques and Strategies for the Estimation of Odor Emission Rates from Different Source Types
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), ...
متن کاملAdaptive Sampling Under Low Noise Conditions
We survey some recent results on efficient margin-based algorithms for adaptive sampling in binary classification tasks. Using the so-called Mammen-Tsybakov low noise condition to parametrize the distribution of covariates, and assuming linear label noise, we state bounds on the convergence rate of the adaptive sampler to the Bayes risk. These bounds show that, excluding logarithmic factors, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Senses
سال: 2007
ISSN: 0379-864X,1464-3553
DOI: 10.1093/chemse/bjm013